4.1钴酸锂存在的问题
由于正极材料本身的局限性,高电压下过量脱锂导致层状结构不稳定,产生体相结构变化,伴随着相变和体积变化,使得晶胞参数变化、晶界错位、应力变化、颗粒开裂,导致容量快速衰减;体相结构体积变化影响到表面结构变化,使得表面易产生裂纹,导致表面热稳定性减弱、金属溶解、析氧等;表面结构的变化伴随着界面副反应及氧的转移,使得电解液氧化、内阻增加、产气、热稳定及安全性能下降等,导致一系列宏观电池失效行为
体相掺杂能够稳定材料结构,抑制不可逆相变,提高材料循环性能。体相掺杂包含:(1)阳离子掺杂:阳离子通常指价态不正三价的离子,主要有锂空位、锂离子、镁离子、铝离子、锆离子等。A.R.West等[8]将镁离子引入到钴酸锂中,认为镁离子掺杂更倾向于钴的位置,使得钴的价态提高,产生一种导入型P型半导体掺杂,同时产生部分锂空位,能够在一定程度上提高电子电导,其研究成果对后续镁离子掺杂起到引导作用
Gopukumar等[12]发现适量的钛掺杂能提高材料的放电比容量,同时钛元素的掺杂后能降低钴的平均价态,提高材料循环稳定性。YongseonKim等[13]通过性原理计算及实验验证,钛元素不容易掺杂到钴酸锂晶格,更容易富集在材料表面;(3)共掺杂:Zhang Jie Nan等[14]采用钛、镁、铝痕量元素共掺杂