来源:河北绍谦机械设备销售有限公司 时间:2024-12-18 03:20:55 [举报]
4.1钴酸锂存在的问题
由于正极材料本身的局限性,高电压下过量脱锂导致层状结构不稳定,产生体相结构变化,伴随着相变和体积变化,使得晶胞参数变化、晶界错位、应力变化、颗粒开裂,导致容量快速衰减;体相结构体积变化影响到表面结构变化,使得表面易产生裂纹,导致表面热稳定性减弱、金属溶解、析氧等;表面结构的变化伴随着界面副反应及氧的转移,使得电解液氧化、内阻增加、产气、热稳定及安全性能下降等,导致一系列宏观电池失效行为
体相掺杂能够稳定材料结构,抑制不可逆相变,提高材料循环性能。体相掺杂包含:(1)阳离子掺杂:阳离子通常指价态不正三价的离子,主要有锂空位、锂离子、镁离子、铝离子、锆离子等。A.R.West等[8]将镁离子引入到钴酸锂中,认为镁离子掺杂更倾向于钴的位置,使得钴的价态提高,产生一种导入型P型半导体掺杂,同时产生部分锂空位,能够在一定程度上提高电子电导,其研究成果对后续镁离子掺杂起到引导作用
Gopukumar等[12]发现适量的钛掺杂能提高材料的放电比容量,同时钛元素的掺杂后能降低钴的平均价态,提高材料循环稳定性。YongseonKim等[13]通过性原理计算及实验验证,钛元素不容易掺杂到钴酸锂晶格,更容易富集在材料表面;(3)共掺杂:Zhang Jie Nan等[14]采用钛、镁、铝痕量元素共掺杂
(3)电子离子双导体包覆:电极是一种的电子离子导体,JoongSun Park等[17]发现AlWxFy是一种良好的电子离子导体,包覆钴酸锂在4.5V下具有电化学性能;(4)电子离子双绝缘包覆:常用的有镁、铝、钛、锆等氧化物。
(1)晶胞结构:主要通过掺杂或共掺杂而实现调控,达到优化材料的能级结构/离子传输通道的目的,从而提升材料电子电导率/离子电导率或者结构稳定性,进而提升材料的倍率性能和高压循环性能等
(2)表面界面结构的控制:主要通过引入新的表面包覆优化表面结构,抑制过渡金属溶解,抑制表面重构,从而达到提的目的;
(3)抑制表层氧的活性:氧的溢出伴随着过渡金属溶解及产气的发生。通过表层处理及高压电解液的配套使用,降低材料表面气体溢出,从而达到提高高温稳定性及循环性能的目的。
标签:回收钴酸锂,钴酸锂在哪里,北辰钴酸锂,钴酸锂厂家